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Abstract
In this study, we discuss the behavior of the Fano factor in a double quantum dot (DQD)
connected with Luttinger liquid (LL) electrodes. At the Toulouse point, we study the
dependence of the Fano factor on the bias voltage, the energy level of the dots, the interdot
coupling, and the asymmetry parameter. We show that the behavior of the Fano factor in a DQD
is similar to that in a single quantum dot (SQD); however, it behaves nonmonotonically with
bias voltage and three local extrema can occur. The condition for the occurrence of
nonmonotonic behavior is determined, and it is shown that local extrema result from the mixing
of the bare energy levels of the dots caused by the interdot coupling. The influence of the Klein
factor on the conductance in a DQD and the limitation of the perturbation calculation for a
DQD are discussed.

1. Introduction

Recent developments in fabrication techniques has made it
possible to fabricate nanoscale devices such as quantum
dots and one-dimensional quantum wires. Single-walled
carbon nanotubes (SWNTs) are promising candidates for
the fabrication of one-dimensional quantum wires. The
noteworthy feature of this one-dimensional electron system
is that it is not described by a Fermi liquid, but by the
Luttinger liquid (LL). In a LL, physical observables scale
as power laws with respect to external parameters such as
bias voltage and temperature [1, 2]. Experiments on carbon
nanotubes have shown that the conductance and differential
conductance obey a power law [3]. Several experiments have
been carried out to study the conductance and its temperature
dependence in quantum wires, SQDs, and/or DQDs in carbon
nanotubes [4–8].

Recently, not only the current but also the current corre-
lation have attracted considerable attention from researchers.
As compared to the average current, the current correlation,
measured as current noise, provides considerable information
about quantum transport. The current noise originates from the
fluctuation of the current from its average value. The Fourier
transform of the current noise gives the noise power. In the
zero-frequency limit, current noise consists of thermal noise
(Johnson–Nyquist noise) and shot noise [9]. The shot noise in

noninteracting systems is suppressed below the Poisson noise
2eI , where e is the elementary electron charge and I is the av-
erage current. In order to characterize the deviation from the
Poisson noise, the Fano factor is often used, which is defined as
the ratio between the shot noise and the Poisson noise. Due to
the difficulty involved in device preparation and the detection
of weak excess noise against the prevalent background noise,
there are few experiments on the shot noise in carbon nan-
otubes [10, 11]. The experimental results exhibit that the shot
noise and the Fano factor scale as a power law with the bias
voltage. Super-Poissonian noise is detected in the Coulomb
diamond, which results from the inelastic cotunneling.

For the theoretical point of view, many studies have
been conducted on the transport properties of a quantum
dot connected with LL electrodes [12–16]. The Coulomb
interaction and the charging effect in quantum dots play
important roles. The conductance peak is governed by
power law scaling. Recently, the shot noise properties of an
inhomogeneous LL model and a Coulomb blockade region
were studied [17–21]. When sequential tunneling is dominant,
the Fano factor is sub-Poissonian. In contrast, in the Coulomb
blockade region, the cotunneling process is dominant. In such
a case, the Fano factor becomes either Poissonian or super-
Poissonian, depending on the ground state of the nanotube.

In this paper, we study a DQD connected with LL
electrodes and examine the properties of the shot noise.
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We consider the case in which the intradot and interdot
Coulomb interactions are neglected, but where the electrostatic
Coulomb interaction between dots and electrodes is taken into
consideration. Although the intradot and interdot Coulomb
interactions may play important roles in electron conduction,
the electron correlation in DQDs is not taken into consideration
so that our results are valid at temperatures higher than the
Kondo temperature. The strong LL correlation in SWNTs
is observed over a wide range of temperatures, which are
considerably higher than the Kondo temperature [3, 6]. This
supports our idea of neglecting the intradot and interdot
Coulomb interactions in the model. The analysis of the model
Hamiltonian is difficult for the general strength of the Coulomb
interaction. However, using bosonization and refermionization
methods, the Hamiltonian is mapped to a Kondo-type model.
This system can be solved exactly for a particular strength
of the Coulomb interaction, the Toulouse point [22]. The
Toulouse approach was first applied to a two-channel Kondo
model at a particular strength of the longitudinal exchange
coupling, the model was mapped to an exactly solvable
resonant-level model [23]. The method was extended to the
nonequilibrium Kondo model, and current, noise spectra, and
magnetic properties were studied [24]. Recently, the full
counting statistics for a Kondo dot at the Toulouse point was
studied [25–27].

The electron tunneling between multiple LL electrodes
via the resonant level in a SQD was studied by using the
renormalization group method [28]. It was shown that there is
a stable fixed point at an intermediate coupling strength when
the LL parameter g is in the range 1/3 < g < 9. From
this point of view, the study on the conductance in a SQD
connected with two LL electrodes at the Toulouse point with
g = 1/2 is justified [29]. In [29], the exact transmission
probability is obtained by using the equation of motion method,
and it is shown that the shot noise is sub-Poissonian, and
the Fano factor behaves nonmonotonically with bias voltage
when the coupling is asymmetric or the energy level of a
dot is out of resonance. It is known that strong Coulomb
correlations in a DQD cause the nonmonotonic behavior of
the Fano factor [30–32]. In contrast, although the intradot
and interdot Coulomb interactions were not considered in [29],
the Fano factor showed a nonmonotonic behavior with bias
voltage.

The conductance in a SQD with two states, and quantum
rachet effects were studied in [29]. However, the properties
of the shot noise in a DQD connected with LL electrodes
have not been studied thus far. In this study, we extend the
model Hamiltonian for a SQD given in [29] to a DQD. We
first verify the validity of the perturbation method for a SQD
and study the mechanism and condition of the nonmonotonic
behavior of the Fano factor. Second, we discuss how the
Fano factor is influenced by the energy levels of dots, interdot
coupling, and the asymmetry parameter in a DQD. We also
discuss the influence of the Klein factor and the limitation of
the perturbation expansion for a DQD.

Figure 1. Double quantum dot connected with LL electrodes. For a
serial DQD, γ1,L = γ2,R = 0; for a T-shaped DQD, γ2,L = γ2,R = 0;
and for a parallel DQD, γ1(2),L(R) �= 0.

2. Model and method

We first introduce the model Hamiltonian and derive the
current and noise formulae for a general configuration of a
DQD system by S-matrix expansion. In order to calculate the
current and the shot noise, it is necessary to determine Green’s
functions. We derive the complete set of Green’s functions
by perturbation expansion up to the second order of tunneling
amplitudes between dots and leads.

2.1. Model Hamiltonian

We consider DQD systems connected with semi-infinite LL
electrodes. There are three types of DQD systems: serial, T-
shaped, and parallel. The geometry of the systems is shown
in figure 1. A DQD is placed at x = 0, where the left- and
right-hand side electrodes are connected. The Hamiltonian of
this system is given by the sum of three parts:

H = HK + Ht + HC, (2.1)

where

HK = Hlead[ψL, ψR]+
∑

i=1,2

�i d
†
i di + W (d†

1 d2 +h.c.), (2.2)

Ht =
∑

i=1,2

∑

j=R,L

γi, j(d
†
i ψ j (0)+ h.c.), (2.3)

and
HC = λC

∑

i=1,2

d†
i di

∑

j=R,L

ψ
†
j (0)ψ j (0). (2.4)

Here, HK is a kinetic part, and Hlead describes the electrons
in the leads; the chemical potential difference between the left-
and right-hand side leads is fixed as μL − μR = eV . The
bias voltage is symmetrically applied. We consider spinless
electrons. Let di and �i denote the annihilation operator and
the energy level of dot i (i = 1 and 2), respectively, and W
denote the amplitude of the interdot coupling. We assume that
the chemical potentials of the left- and right-hand side leads
without bias voltage are μL = μR = μ. The energy level
�i is measured relative to μ. Ht denotes the tunnel coupling
between the dot i and the lead j ( j = L and R), which occurs
at x = 0, with amplitudes γi, j . HC denotes the electrostatic
Coulomb interaction between electrons at x = 0 in both leads
and dots. In this study, although the short-ranged (screened)
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Coulomb interaction between electrons in leads is considered,
the intradot and interdot Coulomb interactions are not taken
into consideration.

Hlead is given as

Hlead[ψL, ψR] = ih̄vF

∑

j=L,R

∫
dx ψ†

j (x)∂xψ j (x)

+ 1

2

∫
dx Uc

∑

j

ρ2
j (x)+

eV

2

∫
dx (ρL(x)− ρR(x))

≡ H0 + HI + Hb, (2.5)

where vF is the Fermi velocity, HI denotes the short-ranged
Coulomb interaction in the leads, Uc is the bare Coulomb
interaction strength, and ρ j (x) is the density operator in
lead j , which is given by ρ j = :ψ†

j (x)ψ j (x):, where the
fermion fields ψ j are normal ordered [33]. An electron
system composed of two semi-infinite leads is described by
the chiral fermions in an infinite lead with the negative half-
axis representing the particles moving toward x = 0, and the
positive half-axis representing the particles moving away from
x = 0 [34]. In the bosonic representation, the part (H0 + HI)

can be simply described in the form of the noninteracting
electron system by the renormalizations of the boson fields
and the Fermi velocity by the LL parameter g, given by g =
(1 + Uc/π h̄vF)

−1/2. For repulsive interactions, g < 1 [35].
The electron field ψ j (x) is expressed in terms of the

bosonic field φ j (x) by

ψ j (x) = 1√
2πa0

Fη j e
iφ j (x)/

√
g, (2.6)

where a0 is a lattice constant, and Fη j is the Klein factor,
which satisfies {Fηk , Fηl }+ = 2δkl and F†

ηk
= Fηk , (where

k and l are either L or R). This ensures the anticommutation
relation betweenψk andψ†

l . Using this bosonic representation,
(H0 + HI) is described by HLL as

HLL = 1

4π

(
vF

g

)∑

j

∫
dx [∂xφ j(x)]2. (2.7)

In the bosonic representation [36], the relation between the
density operator ρ j and the phase field φ j(x) is given as

ρ j (x) = ∂xφ j(x)/2π
√

g. (2.8)

The electron field at the boundary x = 0 is given by

ψ j (0) = 1√
2πa0

Fη j e
iφ j (0)/

√
g . (2.9)

In order to solve the Hamiltonian (2.1), we first transform
d†

i and di to a spin representation of the form [22]

Sx
i = (d†

i + di)/2, Sy
i = −i(d†

i − di)/2,

Sz
i = (d†

i di − 1/2).
(2.10)

From this spin representation, it is found that HC is
equivalent to the Sz spin-density coupling term in the Kondo
Hamiltonian. In order to solve the Hamiltonian, we apply

the transformation. We first define the symmetric and
antisymmetric fields as

φ± = (φL ± φR)/
√

2, (2.11)

where φ± satisfy the bosonic commutation relations. Similar
to Emery and Kivelson’s study [23], we apply the canonical
transformation H ′ = U † HU with

U = exp

(
i
∑

i=1,2

Sz
i φ+(0)/

√
2g

)
. (2.12)

The transformed Hamiltonians are

H ′
K + H ′

C = HK +
∑

i

(
λC/π

√
2g − h̄

(
vF

g

)√
2/g

)

× Sz
i ∂xφ+(0), (2.13)

and

H ′
t = (2πa0)

−1/2
∑

i

[S+
i (γi,L FηL eiφ−/

√
2g

+ γi,R FηR e−iφ−/
√

2g)+ (γi,L FηL e−iφ−/
√

2g

+ γi,R FηR eiφ−/
√

2g)S−
i ]x=0, (2.14)

where S±
i = Sx

i ± iSy
i = d†

i , di . Neglecting the Klein factor
FηL(R) , at the point g = 1/2, we can refermionize the problems
by using new fermion fields

ψ± = eiφ±/
√

2πa0, (2.15)

where ψ± satisfy fermionic commutation relations, and the
Klein factor Fη± is neglected. Using the particle density
operator ψ†

±ψ± = ∂xφ±/2π , the refermionized Hamiltonian
takes the form

H = Hlead[ψ±] +
∑

i=1,2

[(λC − 2π h̄v′
F)2Sz

i ψ
†
+ψ+ +�i S

z
i

+ S+
i (γi,Lψ− + γi,Rψ

†
−)+ (γi,Lψ

†
− + γi,Rψ−)S−

i ]x=0

+ W (d†
1 d2 + h.c.), (2.16)

where the scaled Fermi velocity v′
F = (vF/g) and

Hlead[ψ±] = ih̄v′
F

∑

j=±

∫
dx ψ†

j ∂xψ j + eV
∫

dx ψ†
−ψ−.

(2.17)
It is noted that equation (2.16) has a similar form to

the Kondo model, and the ± channels are decoupled at the
Toulouse point when λC = 2π h̄v′

F. It has been shown that
this Kondo model in nonequilibrium is exactly solvable at the
Toulouse point [24]. We discuss properties at the Toulouse
point, where the + channel is free, so that we do not have
to consider this channel in the following discussions. In
order to calculate the current and the shot noise, we apply
the perturbation expansion in terms of small γi, j . We first
introduce the real (Majorana) fermions ai , bi , ζ , and η:

di = (ai + ibi)/
√

2, ψ− = (ζ + iη)/
√

2, (2.18)

where ai , bi , ζ , and η satisfy a2
i = b2

i = ζ 2 = η2 = 1
2 . Using

these Majorana fermions, the Hamiltonian is written as

H = H0 + H1, (2.19)

3
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Figure 2. Complex-time contour for which nonequilibrium Green’s
functions are defined.

where the unperturbed part

H0[ζ, η; a1, b1, a2, b2] = i
∫

dx [h̄v′
F(ζ(x)∂xζ(x)

+ η(x)∂xη(x))+ eV ζ(x)η(x)]
+ i(�1a1b1 +�2a2b2 + Wa1b2 + Wa2b1) (2.20)

and the perturbed part

H1 = −i(γ+1b1ζ(0)+ γ−1a1η(0)+ γ+2b2ζ(0)+ γ−2a2η(0)).
(2.21)

Here, for convenience, we changed the tunnel amplitude
from γi, j to γ±i defined by

γ±i = γi,L ± γi,R. (2.22)

In chiral formulations, the bias voltage leads to a
difference in the densities of the incoming particles in both
channels [34]. The current is proportional to the difference
between the densities of the incoming and outgoing particles
in each channel, J = −evF(ρL − ρR). Applying the canonical
transformation (2.12) to J , we set N− = ψ

†
−ψ−. The current

operator in terms of the Majorana fermions is defined by

J = −e
dN−
dt

= −ie

h̄
(γ−1a1ζ(0)+ γ+1b1η(0)

+ γ−2a2ζ(0)+ γ+2b2η(0)). (2.23)

Using the perturbed part H1 of the Hamiltonian, the S
matrix is defined by

S = TC exp

[
−
∫

C
dτ (γ+1b1(τ )ζ(τ )+ γ−1a1(τ )η(τ )

+ γ+2b2(τ )ζ(τ )+ γ−2a2(τ )η(τ ))

]
, (2.24)

where TC is the time-ordering operator along the Keldysh
contour C , as shown in figure 2, which consists of the forward
C− and the backward C+ paths. The averages are calculated
by using the S matrix as 〈· · ·〉 = 〈· · · S〉0.

2.2. Current and noise

In order to consider the nonequilibrium state of the system, we
define Green’s functions for the Majorana fermions as

Di j
f h(t, t ′) = −i〈TC f (t)h(t ′)〉,

Gi j
μν(t, t ′) = −i〈TCμ(t)ν(t

′)〉,
Gi j
μ f (t, t ′) = −i〈TCμ(t) f (t ′)〉,

Gi j
fμ(t, t ′) = −i〈TC f (t)μ(t ′)〉,

(2.25)

where f and h indicate either a1,2 or b1,2, and μ and ν

indicate either ζ or η. The times t and t ′ pertain to the paths
Ci and C j , respectively, where i and j indicate either + or
−. Using the abovementioned Green’s functions, we define
advanced and retarded Green’s functions as Ga = G−− −
G+− = −G++ + G−+ and Gr = G−− − G−+ = −G++ +
G+−, respectively. In the steady state, Green’s functions are
translationally invariant in the time domain; they depend on the
time difference (t − t ′). Therefore, we can define their Fourier
transformation.

Assuming that γ± are small, we expand the S matrix
in terms of γ±. To simplify the calculations, we set v′

F =
1. By applying the equation of motion method to the
unperturbed Hamiltonian (2.20), we can obtain zero order
Green’s functions. Putting γ±1 = γ±2 = 0, the zero order
Green’s functions of the ζ–η subsystems are obtained as

G(0)i j
ζ ζ (ω) = G(0)i j

ηη (ω) = i

2

(
H (ω) H (ω)+ 1

H (ω)− 1 H (ω)

)
,

G(0)i j
ζη (ω) = −G(0)i j

ηζ (ω) = 1
2 F(ω)

(
1 1
1 1

)
,

(2.26)
where the Fermi distribution function nF(ω) = 1

eωβ+1 , H (ω) =
nF(ω + eV ) − nF(−ω + eV ), and F(ω) = nF(ω + eV ) −
nF(ω−eV ). From equations (2.26), the retarded and advanced
Green’s functions are G(0)r,(a)

μν = 0 and G(0)r,(a)
μμ = ∓i/2,

respectively.

The zero order Green’s functions of the a–b subsystem
are obtained similarly. The time-ordered and antitime-ordered
Green’s functions are

D(0)−−(++)
a1a1

= D(0)−−(++)
b1b1

= ± 1

D
[ω(ω2 −�2

2 − W 2)],

D(0)−−(++)
a2a2

= D(0)−−(++)
b2b2

= ± 1

D
[ω(ω2 −�2

1 − W 2)],

D(0)−−(++)
a1a2

= D(0)−−(++)
a2a1

= D(0)−−(++)
b1b2

= D(0)−−(++)
b2b1

= ± 1

D
[ωW (�1 +�2)],

D(0)−−(++)
a1b1

= −D(0)−−(++)
b1a1

= ± i

D
[�1(ω

2 −�2
2)+ W 2�2],

D(0)−−(++)
a2b2

= −D(0)−−(++)
b2a2

= ± i

D
[�2(ω

2 −�2
1)+ W 2�1],

D(0)−−(++)
a1b2

= D(0)−−(++)
a2b1

= −D(0)−−(++)
b2a1

= −D(0)−−(++)
b1a2

= ± i

D
[W (ω2 +�1�2 − W 2)],

(2.27)

where D(ω) = �p=±[�i(ω+ p�i)− W 2], and the antitime-
ordered Green’s function corresponds to the lower sign in the
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right-hand side. The lesser and greater Green’s functions are

D(0)−+(+−)
a1a1

= D(0)−+(+−)
b1b1

= ±iπδ(ω + λ1),

D(0)−+(+−)
a2a2

= D(0)−+(+−)
b2b2

= ±iπδ(ω + λ2),

D(0)−+(+−)
a1a2

= D(0)−+(+−)
b1b2

= ±i
(�1 −�2)−√

(�1 −�2)2 + 4W 2

2W
πδ(ω + λ2),

D(0)−+(+−)
a2a1

= D(0)−+(+−)
b2b1

= ∓i
(�1 −�2)−√

(�1 −�2)2 + 4W 2

2W
πδ(ω + λ1),

D(0)−+(+−)
a1b1

= −D(0)−+(+−)
b1a1

= ±πδ(ω + λ1),

D(0)−+(+−)
a2b2

= −D(0)−+(+−)
b2a2

= ±πδ(ω + λ2),

D(0)−+(+−)
a1b2

= −D(0)−+(+−)
b1a2

= ± (�1 −�2)−
√
(�1 −�2)2 + 4W 2

2W
πδ(ω + λ2),

D(0)−+(+−)
a2b1

= −D(0)−+(+−)
b2a1

= ∓ (�1 −�2)−
√
(�1 −�2)2 + 4W 2

2W
πδ(ω + λ1),

(2.28)

where λ1,2 = 1
2 [(�1 + �2) ± √

(�1 −�2)2 + 4W 2], and
the greater Green’s function corresponds to the lower sign in
the right-hand side. In order to prevent the divergence of
equations (2.27), D(ω) in each denominator is replaced by
D(ω) = �p=±�i (ω + pλi + iδ) with an arbitrary positive
small δ.

The average current is obtained by expanding the S matrix
in terms of γ±1,2. Up to the second order of γ±1,2, the current
is given in the form proposed by Meir and Wingreen [37] as

I (V ) = 〈J 〉 = ie

h̄

1

2π

∫
dω Tr[G(0)

ζη (−ω)
× (�++ Da

bb(ω)− �−− Da
aa(ω))], (2.29)

where

�±± =
(

γ 2
±1 γ±1γ±2

γ±2γ±1 γ 2
±2

)
,

Da
f h =

(
Da

f1h1
Da

f1h2

Da
f2h1

Da
f2h2

)
,

(2.30)

where f and h are either a or b.
The current noise is defined by the power spectrum of

the current fluctuations. Using the current operator (2.23), we
can derive the noise spectrum. It is divided into parallel and
perpendicular components:

P(�) =
∫

dt ei�t [〈J (t)J (0)〉 − 〈J (0)〉2]
≡ P‖(�)+ P⊥(�), (2.31)

where

P‖(�) = 1

2π

(−ie

h̄

)2 ∫
dωTr[G+−

ζ ζ (�− ω)�−− D+−
aa (ω)

+ G+−
ηη (�− ω)�++ D+−

bb (ω)

− �−−G+−
aζ ;ζa(ω)− �++G+−

bη;ηb(ω)] (2.32)

and

P⊥(�) = 1

2π

(−ie

h̄

)2 ∫
dω Tr[G+−

ζη (�− ω)�+− D+−
ab (ω)

+ G+−
ηζ (�− ω)�−+ D+−

ba (ω)

− �+−G+−
aη;ζb(ω)− �−+G+−

bζ ;ηa(ω)], (2.33)

where

�±∓ =
(
γ±1γ∓1 γ±1γ∓2

γ±2γ∓1 γ±2γ∓2

)
,

D+−
f h (ω) =

(
D+−

f1h1
(ω) D+−

f1h2
(ω)

D+−
f2h1
(ω) D+−

f2h2
(ω)

)
,

G+−
f μ;νh(ω)

=
(

G+−
f1μ
(ω)G+−

νh1
(�− ω) G+−

f1μ
(ω)G+−

νh2
(�− ω)

G+−
f2μ
(ω)G+−

νh1
(�− ω) G+−

f2μ
(ω)G+−

νh2
(�− ω)

)
,

(2.34)

where f and h are either a or b. The parallel and perpendicular
components correspond to diagonal and off-diagonal parts in
the terms of the second order of γ±1,2, respectively.

The abovementioned derivations of the current and the
noise spectrum are simple extensions of a SQD, given in [29],
to a DQD. We consider the effect of the Klein factor, which
we had ignored while deriving the refermionized Hamiltonian.
Without the Klein factor, the Hamiltonian is simply divided
into unperturbed and perturbed parts by using the Majorana
fermions. For a SQD connected with LL electrodes, there is
no serious effect from neglecting the Klein factor. Contrary to
it, if the Klein factor is taken into consideration for a DQD,
the order of electron tunneling into quantum dots becomes
important. By using the renormalization group method, it is
shown that the current does not flow in an asymmetric parallel
DQD; for an asymmetric tunnel coupling, the model flows to
fixed points at which one of the tunnel amplitudes is zero [38].
This suggests that the Fermi statistics of electrons plays an
important role through the Klein factor. In the bosonization
and refermionization processes, we neglected the Klein factor,
so the Fermi statistics of electrons does not hold. The influence
of the absence of the Klein factor on our results is discussed in
section 3.

In the following subsections, we derive Green’s functions
for the Majorana fermions by using the S-matrix expansion and
the Dyson equations.

2.3. Green’s functions for DQD

In order to numerically calculate the current and noise
spectrum, it is necessary to determine Green’s functions.
We briefly explain the derivation of Green’s functions by
perturbation up to the second order of γ±1,2.

First, in order to obtain the current (2.29), it is necessary
to derive advanced Green’s functions Da

f h . From the Dyson
equations for each Green’s function, Da

f h are formulated in a 4
× 4 matrix form as

AaDa = D(0)a, (2.35)

5



J. Phys.: Condens. Matter 21 (2009) 395303 S Kawaguchi

where

Aa ≡

⎛

⎜⎜⎜⎝

Aa
a1a1

Aa
a1b1

Aa
a1a2

Aa
a1b2

Aa
b1a1

Aa
b1b1

Aa
b1a2

Aa
b1b2

Aa
a2a1

Aa
a2b1

Aa
a2a2

Aa
a2b2

Aa
b2a1

Aa
b2b1

Aa
b2a2

Aa
b2b2

⎞

⎟⎟⎟⎠ ,

Da ≡

⎛
⎜⎜⎜⎝

Da
a1a1

Da
a1b1

Da
a1a2

Da
a1b2

Da
b1a1

Da
b1b1

Da
b1a2

Da
b1b2

Da
a2a1

Da
a2b1

Da
a2a2

Da
a2b2

Da
b2a1

Da
b2b1

Da
b2a2

Da
b2b2

⎞
⎟⎟⎟⎠ ,

D(0)a ≡

⎛
⎜⎜⎜⎜⎝

D(0)a
a1a1

D(0)a
a1b1

D(0)a
a1a2

D(0)a
a1b2

D(0)a
b1a1

D(0)a
b1b1

D(0)a
b1a2

D(0)a
b1b2

D(0)a
a2a1

D(0)a
a2b1

D(0)a
a2a2

D(0)a
a2b2

D(0)a
b2a1

D(0)a
b2b1

D(0)a
b2a2

D(0)a
b2b2

⎞
⎟⎟⎟⎟⎠
.

(2.36)

Here, the matrix elements of Aa are

Aa
fi a j

= −γ− j

∑

k=1,2

γ−k D(0)a
fi ak

G(0)a
ηη ,

Aa
fi b j

= −γ+ j

∑

k=1,2

γ+k D(0)a
fi bk

G(0)a
ζ ζ ,

Aa
ai ai

= 1 − γ−i

∑

k=1,2

γ−k D(0)a
ai ak

G(0)a
ηη ,

Aa
bi bi

= 1 − γ+i

∑

k=1,2

γ+k D(0)a
bi bk

G(0)a
ζ ζ ,

(2.37)

where f is either a or b, and i and j are either 1 or 2.
We can obtain the advanced Green’s functions by solving
equation (2.35). For the retarded Green’s functions Dr

f h ,
similar equations can be obtained by replacing the superscript
a with r in equation (2.35).

Second, in order to obtain the noise spectrum, it is
necessary to derive the greater Green’s functions D+−

f h . Using
the Dyson equation and the analytic continuation rules, D+−

f h
are formulated in the matrix form as

A+−D+− = C+−, (2.38)

where

A+− ≡

⎛

⎜⎜⎜⎝

A+−
a1a1

A+−
a1b1

A+−
a1a2

A+−
a1b2

A+−
b1a1

A+−
b1b1

A+−
b1a2

A+−
b1b2

A+−
a2a1

A+−
a2b1

A+−
a2a2

A+−
a2b2

A+−
b2a1

A+−
b2b1

A+−
b2a2

A+−
b2b2

⎞

⎟⎟⎟⎠ ,

D+− ≡

⎛

⎜⎜⎜⎝

D+−
a1a1

D+−
a1b1

D+−
a1a2

D+−
a1b2

D+−
b1a1

D+−
b1b1

D+−
b1a2

D+−
b1b2

D+−
a2a1

D+−
a2b1

D+−
a2a2

D+−
a2b2

D+−
b2a1

D+−
b2b1

D+−
b2a2

D+−
b2b2

⎞

⎟⎟⎟⎠ ,

C+− ≡

⎛
⎜⎜⎜⎝

C+−
a1a1

C+−
a1b1

C+−
a1a2

C+−
a1b2

C+−
b1a1

C+−
b1b1

C+−
b1a2

C+−
b1b2

C+−
a2a1

C+−
a2b1

C+−
a2a2

C+−
a2b2

C+−
b2a1

C+−
b2b1

C+−
b2a2

C+−
b2b2

⎞
⎟⎟⎟⎠ .

(2.39)

Here, the matrix elements of A+− are

A+−
fi a j

= −γ− j

∑

k=1,2

γ−k D(0)r
fi ak

G(0)r
ηη ,

A+−
fi b j

= −γ+ j

∑

k=1,2

γ+k D(0)r
fi bk

G(0)r
ζ ζ ,

A+−
ai ai

= 1 − γ−i

∑

k=1,2

γ−k D(0)r
ai ak

G(0)r
ηη ,

A+−
bi bi

= 1 − γ+i

∑

k=1,2

γ+k D(0)r
bi bk

G(0)r
ζ ζ .

(2.40)

The matrix elements of C+− are

C+−
f h = C (0)+−

f h +
∑

k,l=1,2

γ+kγ+l D(0)r
f bk

G(0)+−
ζ ζ Da

bl h

+
∑

k,l=1,2

γ−kγ−l D(0)r
f ak

G(0)+−
ηη Da

al h

+
∑

k,l=1,2

γ+kγ−l D(0)r
f bk

G(0)+−
ζη Da

al h

+
∑

k,l=1,2

γ−kγ+l D(0)r
f ak

G(0)+−
ηζ Da

bl h
, (2.41)

where f and h are either a1,2 or b1,2.
For the electrode Majorana Green’s functions Gμν , we can

derive the Dyson equation in a similar way. The advanced
Green’s functions Ga

μν are formulated in the matrix form as

MaΞa = Ξ(0)a, (2.42)

where

Ma ≡

⎛

⎜⎜⎜⎜⎜⎝

Ma
a1a1

Ma
a1b1

0 0

Ma
b1a1

Ma
b1b1

0 0

0 0 Ma
a2a2

Ma
a2b2

0 0 Ma
b2a2

Ma
b2b2

⎞

⎟⎟⎟⎟⎟⎠
,

Ξa ≡

⎛
⎜⎜⎜⎜⎜⎝

Ga
ηη

Ga
ζη

Ga
ηζ

Ga
ζ ζ

⎞
⎟⎟⎟⎟⎟⎠
, Ξ(0)a ≡

⎛
⎜⎜⎜⎜⎝

G(0)a
ηη

G(0)a
ζη

G(0)a
ηζ

G(0)a
ζ ζ

⎞
⎟⎟⎟⎟⎠
.

(2.43)

Here, the matrix elements of Ma are

Ma
ai bi

= −
∑

k,l=1,2

γ−kγ+l D(0)a
ak bl

G(0)a
ηη ,

Ma
bi ai

= −
∑

k,l=1,2

γ+kγ−l D(0)a
bk al

G(0)a
ζ ζ ,

Ma
ai ai

= 1 −
∑

k,l=1,2

γ−kγ−l D(0)a
ak al

G(0)a
ηη ,

Ma
bi bi

= 1 −
∑

k,l=1,2

γ+kγ+l D(0)a
bk bl

G(0)a
ζ ζ .

(2.44)
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In contrast, for the greater Green’s functions, G+−
μν are

formulated as

M+−Ξ+− = B+−, (2.45)

where

M+− ≡

⎛
⎜⎜⎜⎜⎜⎝

M+−
a1a1

M+−
a1b1

0 0

M+−
b1a1

M+−
b1b1

0 0

0 0 M+−
a2a2

M+−
a2b2

0 0 M+−
b2a2

M+−
b2b2

⎞
⎟⎟⎟⎟⎟⎠
,

Ξ+− ≡

⎛
⎜⎜⎜⎜⎜⎝

G+−
ηη

G+−
ζη

G+−
ηζ

G+−
ζ ζ

⎞
⎟⎟⎟⎟⎟⎠
, B+− ≡

⎛
⎜⎜⎜⎜⎜⎝

B+−
ηη

B+−
ζη

B+−
ηζ

B+−
ζ ζ

⎞
⎟⎟⎟⎟⎟⎠
.

(2.46)

Here, the matrix elements of M+− are

M+−
ai bi

= −
∑

k,l=1,2

γ−kγ+l D(0)r
ak bl

G(0)r
ηη ,

M+−
bi ai

= −
∑

k,l=1,2

γ+kγ−l D(0)r
bk al

G(0)r
ζ ζ ,

M+−
ai ai

= 1 −
∑

k,l=1,2

γ−kγ−l D(0)r
ak al

G(0)r
ηη ,

M+−
bi bi

= 1 −
∑

k,l=1,2

γ+kγ+l D(0)r
bk bl

G(0)r
ζ ζ ,

(2.47)

and the B+−
μν are

B+−
μν = G(0)+−

μν +
∑

k,l=1,2

γ+kγ+l G
(0)+−
μζ D(0)a

bk bl
Ga
ζ ν

+
∑

k,l=1,2

γ−kγ−l G
(0)+−
μη D(0)a

ak al
Ga
ην

+
∑

k,l=1,2

γ+kγ−l G
(0)+−
μζ D(0)a

bk al
Ga
ην

+
∑

k,l=1,2

γ−kγ+l G
(0)+−
μη D(0)a

ak bl
Ga
ζ ν, (2.48)

where μ and ν are either ζ or η.

G±
fμ;νh denotes the Green’s functions between different

subsystems of the Majorana fermions (a–b and ζ–η
subsystems). In order to express them in terms of the same
subsystem, the S-matrix expansion is utilized. We obtain the

relations
G+−

fiη
= − 1

2 F i
∑

k=1,2

γ+k Dr
fi bk

− i
∑

k=1,2

γ−k D+−
fi ak

G(0)a
ηη

− i
∑

k=1,2

γ−k Dr
fi ak

G(0)+−
ηη ,

G+−
fiζ

= 1
2 F i

∑

k=1,2

γ−k Dr
fi ak

− i
∑

k=1,2

γ+k D+−
fi bk

G(0)a
ζ ζ

− i
∑

k=1,2

γ+k Dr
fi bk

G(0)+−
ζ ζ ,

G+−
η fi

= − 1
2 F i

∑

k=1,2

γ+k Da
bk fi

+ i
∑

k=1,2

γ−k Da
ak fi

G(0)+−
ηη

+ i
∑

k=1,2

γ−k D+−
ak fi

G(0)r
ηη ,

G+−
ζ fi

= 1
2 F i

∑

k=1,2

γ−k Da
ak fi

+ i
∑

k=1,2

γ+k Da
bk fi

G(0)+−
ζ ζ

+ i
∑

k=1,2

γ+k D+−
bk fi

G(0)r
ζ ζ ,

(2.49)

where f is either a or b. Using these relations, we can obtain
G±

bη;ηb.
Thus, we derived the Green’s functions of the Majorana

fermions. Substituting them into equations (2.29) and (2.31),
we can calculate the current and the noise spectrum,
respectively.

3. Numerical results

In section 2.3, we have derived the Green’s functions by the
perturbation expansion. Using those Green’s functions, the
current is given in the Landauer formula [39] as

I = e

h̄

�

2π

∫
dω T (ω)[nF(ω − eV )− nF(ω)]

≡ e

h

∫
dω T (ω)[nF(ω − eV )− nF(ω)],

(3.1)

where T (ω) is the transmission probability, and all energy
variables are scaled by �. On the other hand, the noise
spectrum is generally calculated by using the complete set of
Green’s functions. However, for the symmetric coupling case,
P⊥(�) = 0, so that the noise spectrum at � = 0 is described
in a simple form as

P(0) = 2e2

h

∫
dω T (ω)(1 − T (ω))[nF(ω − eV )− nF(ω)].

(3.2)
We note that this formula at zero temperature has a

similar form to the formula for noninteracting electrons [9, 40].
We remark that the shot noise for the asymmetric coupling
case cannot be described in a simple form (3.2); it must be
calculated by using the complete set of Green’s functions. In
the following subsections, we obtain the explicit expression
of the transmission probability for a SQD and T-shaped and
parallel DQD systems, and discuss the dependence of the Fano
factor on the bias voltage, the energy levels of dots, the interdot
coupling, and the asymmetry parameter. In the numerical
calculations, we restrict �1,2 and W in the range �1,2 � 0
and W � 0, unless otherwise stated.
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(a) (b)

eV eV

Figure 3. Dependence of (a) current and (b) shot noise in the zero-frequency limit in SQD on bias voltage. �1 = 0. Curves denoted by ◦, �,
, and �� correspond to cases α = 0.5, 0.3, 0.2, and 0.1, respectively, which are obtained by using the exact transmission probability (3.3).
Curves denoted by •, �, �, and correspond to cases α = 0.5, 0.3, 0.2, and 0.1, respectively, which are obtained by using the approximate
transmission probability (3.5) and the complete set of Green’s functions.

3.1. SQD

We first consider the case γ±2 = 0 and W = 0. In
this case, our DQD system describes a SQD system. The

asymmetry parameter α is defined by α = γ 2
1,L

γ 2
1,L+γ 2

1,R
, and all

energy variables are scaled by � = γ 2
1,L + γ 2

1,R (≡γ 2
0 ). For

the transmission probability and shot noise, the results do not
change under the replacement α ↔ (1−α). Thus, we restrict α
in the range 0 � α � 0.5. In order to verify the validity of the
perturbation calculation, we compare the currents and the Fano
factors obtained by two different methods—using the exact
transmission probability and using perturbation calculations.

The exact transmission probability of this quantum
dot system is obtained by using the equation of motion
method [22]:

Te(ω) = 4γ 2 E2

(E2 + β2+)(E2 + β2−)+ 2γ 2(E2 + β+β−)+ γ 4
,

(3.3)
where

E = (ω2 −�2
1), β± = [(1 − 2α)�1 ± ω]/2,
γ = ω

√
α(1 − α).

(3.4)

On the other hand, using Green’s functions obtained
by perturbation expansion, we can derive the approximate
transmission probability as

T (ω) = 2
√
α(1 − α)ω2

[E + 1
4 + α(1 − α)]2 +�2

1 − α(1 − α)
. (3.5)

We can verify that T (ω) agrees with Te(ω) only for α =
0.5. The current is given by the Landauer formula (3.1). The
dependence of the current on bias voltage for �1 = 0 is
shown in figure 3(a). Although currents obtained by using
the transmission probabilities (3.3) and (3.5) agree completely
when α = 0.5, the difference between the currents obtained by
two different methods is large for small α.

Second, we discuss the shot noise. For �1 = 0, the shot
noise in the zero-frequency limit is calculated using the exact
transmission probability Te as [29]

Pe(0) = 2e2

h

∫
dω Te(ω)(1 − Te(ω))[nF(ω − eV )− nF(ω)].

(3.6)
Equation (3.6) is of the same form as that of the nonin-

teracting case. For g = 1/2, the original Hamiltonian (2.1)
is mapped to the refermionized Hamiltonian (2.16). At the
Toulouse point, it describes free fermions which scatter at
x = 0. Thus, we can guess that the resulting formula for shot
noise is same as that of the noninteracting system. We com-
pare the shot noise obtained by using equation (3.6) and the
perturbation calculation. At zero temperature, the shot noise
obtained by the two different methods is shown in figure 3(b).
Similar to the results for current, the difference between the
shot noise obtained by two methods is large for small α.

At zero temperature, the shot noise Fano factor F(V ) =
P(0)/2eI is used to characterize the deviation from the
Poisson value 2eI . The dependence of the Fano factor on bias
voltage is shown in figure 4. The data were calculated by using
two different methods for fixed �1 or α. For �1 = 0, there is
no difference between the values calculated by using the two
methods (figure 4(a-i)). However, in the case of large �1, a
difference is observed for small α only at a low bias voltage
(figure 4(a-ii)). For α = 0.5 but �1 �= 0, the shot noise is
given by equation (3.6). The Fano factor for different �1 is
shown in figure 4(b-i). The Fano factor shows a monotonic
behavior for �1 = 0, but it shows a nonmonotonic behavior
with a local minimum for �1 �= 0. We can also verify that
the difference between the values is large for small α and large
�1, and the difference is observed only at a low bias voltage
(compare figure 4(b-i) with (b-ii)).

The properties of the Fano factor in a SQD are such that
the noise is sub-Poissonian, and only under resonance for
α = 0.5 and �1 = 0 does the Fano factor show a monotonic
behavior with bias voltage. For other values of α and �1,

8
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Figure 4. Dependence of Fano factor in SQD on bias voltage. (a)�1 is fixed case: (a-i)�1 = 0 and (a-ii) �1 = 3. Curves denoted by ◦, ,
and �� correspond to cases α = 0.5, 0.2, and 0.1, respectively, which are obtained by using the exact transmission probability. Curves denoted
by •, �, and correspond to cases α = 0.5, 0.2, and 0.1, respectively, which are obtained by using the approximate transmission probability
and the complete set of Green’s functions. (b) α is fixed case: (b-i) α = 0.5 and (b-ii) α = 0.05. Curves denoted by ◦, , and �� correspond
to cases�1 = 0.0, 1.5, and 3.0, respectively, which are obtained by using the exact transmission probability. Curves denoted by •, �, and
correspond to cases�1 = 0.0, 1.5, and 3.0, respectively, which are obtained by using the approximate transmission probability and complete
set of Green’s functions.

the Fano factor shows a nonmonotonic behavior, and a local
minimum occurs in the intermediate voltage range. From the
definition of the Fano factor, we find that the local minimum
at V = V ∗ satisfies the relation F(V ∗) = (1 − T (eV ∗)).
The small bias limit of the Fano factor is F(0) = 0 and 1 for
α = 0.5 and 0 � α < 0.5, respectively. In contrast, the large
bias limit does not depend on �1, but only on α, F(∞) =
2α2 − 2α + 1 [29]. Let us compare these results with other
systems. The Fano factor for double barrier resonant tunneling
in a noninteracting Fermi liquid was studied in [41]. In this
case, the shot noise is sub-Poissonian, and the Fano factor
shows a monotonic behavior with bias voltage. The limiting
values are F(0) = (2α − 1)2 and F(∞) = 2α2 − 2α + 1.
Thus, the behavior of the Fano factor in the large bias limit
F(∞) is same as that of the noninteracting Fermi liquid. The
nonmonotonic behavior of the Fano factor in the LL with two
barriers was studied in [42]. In that study, for large asymmetric
barriers, a series of dips (local minima) are observed, and the
Fano factor saturates to a constant value with increasing bias
voltage. This results from the interplay between Coulomb
blockade features and non-Fermi liquid correlations. On the

other hand, the intradot Coulomb interaction is not taken into
consideration in our model. The local minima occurs when the
abovementioned relation between the transmission probability
and the Fano factor is satisfied self-consistently. This suggests
that the occurrence of a dip in this model is closely related with
the profile of the transmission probability.

Thus, for the asymmetric coupling case, the current and
the shot noise obtained by using the second order perturbation
expansion are larger than the exact solution. However, the
Fano factor agrees well with the exact result, except at a low
bias voltage. The difference at a low bias voltage is large
for cases of small α and large �1. We guess that the reason
for the agreement of the Fano factor is the cancelation by the
division between the shot noise and the current. Taking these
preliminary studies of a SQD into consideration, we calculate
the Fano factor for symmetric and asymmetric coupling cases
of T-shaped and parallel DQDs by using a complete set of
Green’s functions. For the symmetric coupling case, the
dependence of the Fano factor on the energy levels of the dots
and the interdot coupling is studied on the basis of the profile of
the transmission probability. Furthermore, for a parallel DQD,
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eV eV

Figure 5. Dependence of the Fano factor in T-shaped DQD on bias voltage for different energy levels of dots and interdot coupling. α = 0.5.
(a)�1 = �2 = 0. Curves denoted by •, ∗, ��, ◦, and � correspond to cases W = 0.0, 0.02, 0.04, 0.1, and 0.5, respectively. (b)�1 = 2.0 and
�2 = 1.0. Curves denoted by •, ∗, ��, and ◦ correspond to cases W = 0.0, 1.1,

√
2.0, and 1.5, respectively.

two types of asymmetry are considered, and the limitation of
the perturbation calculation is discussed.

3.2. T-shaped DQD

The transmission probability for the T-shaped DQD obtained
by the perturbation expansion is

T (ω) = 2
√
α(1 − α)F2

T1

[D − (α − 1
2 )

2 FT2]2 + F2
T1

, (3.7)

where

FT1 = ω(ω2 −�2
2 − W 2), FT2 = (ω2 −�2

2). (3.8)

The asymmetry parameter α is defined by α = γ 2
1,L

γ 2
1,L+γ 2

1,R
,

and all energy variables are scaled by � = (γ 2
1,L + γ 2

1,R).
For the symmetric coupling case, the shot noise is

described by a simple form (3.2). The behavior of the
Fano factor can be easily understood from the profile of
the transmission probability. Therefore, we first examine
the transmission probability for the symmetric coupling case.
Substituting α = 0.5, the transmission probability T (ω)
becomes

T (ω) = FT1(ω)
2

D(ω)2 + FT1(ω)2
. (3.9)

This transmission probability has three local minima at

ω = 0, ±
√
�2

2 + W 2 and four local maxima at ω = ± 1
2 [(�1+

�2) ± √
(�1 −�2)2 + 4W 2]. The degenerate local extrema

result in different profiles. For �1 = �2 = W = 0, T (ω) has
one local maximum at ω = 0. However, for W �= 0, T (ω)
has two local maxima at ω = ±W and one local minimum at
ω = 0. For W = 0, �1 �= 0, and �2 = 0, T (ω) has one local
minimum at ω = 0 and two local maxima at ω = ±�1. For
W �= 0, T (ω) has three local minima at ω = 0, ±W and four

local maxima at ω = ± 1
2 [�1 ±

√
�2

1 + 4W 2]. The role of the
energy levels of dots 1 and 2 is different. Let us exchange �1

and �2 such that �1 = 0 and �2 �= 0. For W = 0, T (ω) has
one local maximum at ω = 0. For W �= 0, T (ω) has three

local minima at ω = 0, ±
√
�2

2 + W 2 and four local maxima

at ω = ± 1
2 [�2 ±

√
�2

2 + 4W 2]. For general values of �1,2

and W (�=0), we find that when W = √
�1�2 (≡W ∗), the two

local maxima approach ω = 0. In this case, a local maximum
around ω = 0 has a sharp dip satisfying T (0) = 0. Thus, the
interdot coupling causes four local maxima, except for the case
W = W ∗, in which three local maxima occur. At these local
minima and maxima, T (ω) is 0 and 1. On the basis of these
properties of the transmission probability, we discuss the Fano
factor.

The dependence of the Fano factor on the bias voltage is
shown in figure 5. First, let us consider the case�1 = �2 = 0.
For W = 0, the Fano factor is strongly suppressed to 0
at a small voltage; however, it increases monotonically and
saturates to 0.5 at a large voltage (figure 5(a)). For W �= 0, the
Fano factor increases at a small voltage. Because T (0) = 0 and
two local maxima occur for W > 0, the Fano factor converges
to 1 in the limit V → 0. We find that the Fano factor has
one local minimum for W > 0. We can show that the local
minimal voltage V ∗ satisfies F(V ∗) = (1 − T (eV ∗)). For
general values of�1,2 (�=0), the dependence of the Fano factor
on the bias voltage becomes more complex. In the case of
W = 0, there is one solution for F(V ∗) = (1 − T (eV ∗)),
so that one local minimum occurs in the Fano factor. On the
other hand, for W �= 0, W ∗, two local minima and one local
maximum occur in the Fano factor at intermediate voltage. In
this case, there are four local maxima in T (ω). This results
in three solutions for F(V ∗) = (1 − T (eV ∗)) in the range
V ∗ > 0. Then, two local minima and one maximum occur in
the Fano factor (figure 5(b)). However, for W = W ∗, three
local maxima occur in T (ω). One of them is located around
ω = 0, so that the Fano factor is strongly suppressed to 0 at
a small voltage (curves denoted by �� in figure 5(b)). Thus,
the nonmonotonic behavior of the Fano factor results from the
complex structure of the transmission probability. The interdot

10
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Figure 6. Dependence of Fano factor in T-shaped DQD on interdot coupling for different energy levels of dots and bias voltage. α = 0.5.
(a)�1 = �2 = 0 and (b)�1 = 2.0 and �2 = 1.0. Curves denoted by •, ∗, and �� correspond to cases ln(eV/�) = −4.0, 0.0, and 4.0,
respectively.

eV eV

Figure 7. Dependence of Fano factor in T-shaped DQD on bias voltage for different energy levels of dots, interdot coupling, and asymmetry
parameter. (a) α = 0.1 and (b) α = 0.3. Curves denoted by •, ∗, and �� correspond to cases (�1,�2,W ) = (0, 0, 0), (2, 0, 1), and (0, 2, 1),
respectively.

coupling causes the mixing of the bare energy levels of the
dots, leading to the complex dependence of the transmission
probability on these parameters.

The dependence of the Fano factor on interdot coupling is
shown in figure 6. We explain three cases of different bias
voltages. Let us consider the case of a small bias voltage
(curves denoted by •). For the case �1 = �2 = 0, T (0) → 1
in the limit W → 0, so that the Fano factor is 0. Increasing
W , T (0) = 0, so that the Fano factor increases and saturates
to 1 (figure 6(a)). For general values of �1,2 (�=0), T (0) = 0,
so that the Fano factor is 1 in the limit W → 0. Increasing
W , four local maxima occur in T (ω). These are located away
from ω = 0, so that T (ω) around ω = 0 is very small, and the
Fano factor is 1. However, for W = W ∗, one local maximum
occurs around ω = 0. Although this peak has a sharp dip
satisfying T (0) = 0, T (ω) has a large value around ω = 0,
so that the Fano factor is strongly suppressed (figure 6(b)).
When the bias voltage is in the intermediate range (curves
denoted by ∗), the Fano factor changes nonmonotonically with
W . The Fano factor in the limit W → 0 varies depending

on �1,2. Increasing W , four local maxima occur in T (ω),
resulting in the nonmonotonic behavior of the Fano factor. For
considerably large W , the maxima are located at |ω| � eV
and T (ω) ∼ 0 in the range |ω| < eV , so that the Fano factor
saturates to 1 for any value of �1,2. When the bias voltage is
large (curves denoted by ��), the Fano factor is about 0.5 for
any value of �1,2 and W .

Second, we consider the asymmetric coupling case, in
which α �= 0.5. The dependence of the Fano factor on bias
voltage is nonmonotonic, as shown in figure 7. The limiting
values of the Fano factors are F(0) = 1 and F(∞) =
2α2 − 2α + 1, which are the same as those in case of a SQD.
The only difference is that three local minima can occur in the
intermediate voltage range.

3.3. Parallel DQD

For the parallel DQD, the asymmetric parameters are defined
by α1 = γ 2

1,L/(γ
2
1,L + γ 2

1,R) and α2 = γ 2
2,L/(γ

2
2,L + γ 2

2,R). We
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assume (γ 2
1,L + γ 2

1,R) = (γ 2
2,L + γ 2

2,R) ≡ γ 2
0 , and all energy

variables are scaled by � = γ 2
0 . We consider two types of

asymmetric coupling: (i) α1 = α2 and (ii) α1 = 1 − α2. We
note that for type (ii), in the limits α1 → 0 and α2 → 1, the
parallel DQD is equivalent to a serial DQD with symmetric
coupling.

First, we consider type (i), i.e., α1 = α2 = α.
The transmission probability obtained by the perturbation
expansion is

T (ω) = 2
√
α(1 − α)F2

s1 D2

[D2 + (α − 1
2 )

2(F2
s2 − F2

s1)]2 + D2 F2
s1

, (3.10)

where

Fs1 = ω[2ω2 −�2
1 −�2

2 − 2W 2 + 2W (�1 +�2)],
Fs2 = (�1 +�2)(ω

2 −�1�2 + W 2)

+ 2W (ω2 +�1�2 − W 2).

(3.11)

Our parallel DQD is equivalent to a SQD with two states.
The exact transmission probability Te(ω) for a SQD with two
states is obtained by using the equation of motion method
in [29]. It is of the same form as equation (3.3), but the
parameters are replaced by

E = [(ω −�1)(ω −�2)− W 2][(ω +�1)(ω +�2)− W 2],
γ = ω

√
α(1 − α)[−2ω2 +�2

1 +�2
2

+ 2W 2 − 2W (�1 +�2)],
β± = ( 1

2 − α)[(�1 +�2)(−ω2 +�1�2 − W 2)− 2Wω2]
± γ

2
√
α(1 − α)

.

(3.12)

For the symmetric coupling case, α = 0.5, Te(ω) agrees
with T (ω), and T (ω) becomes

T (ω) = Fs1(ω)
2

D(ω)2 + Fs1(ω)2
. (3.13)

It is noted that the properties of the transmission
probability and the shot noise do not change under the
exchange of �1 and �2 due to the symmetry of the system.
This transmission probability has three local minima at ω =
0, ±

√
1
2 [(�1 − W )2 + (�2 − W )2] and four local maxima at

ω = ± 1
2 [(�1 + �2) ± √

(�1 −�2)2 + 4W 2]. Consider the
case of �1 = �2 = 0. For W = 0, T (ω) has one local
maximum at ω = 0. However, for W �= 0, T (ω) has two
local maxima at ω = ±W and one local minimum at ω = 0.
Next, consider the case �1 �= 0 and �2 = 0. For W = 0,
T (ω) has two local minima at ω = ±�1/

√
2 and three local

maxima at ω = 0, ±�1. For W �= 0, T (ω) has three local

minima at ω = 0, ±
√

1
2 [(�1 − W )2 + W 2] and four local

maxima at ω = ± 1
2 [�1 ±

√
�2

1 + 4W 2]. For general values
of �1,2 and W (�=0), a pair of local minima and local maxima
occur at the same positions when �1 = �2 = �. As a result,
T (ω) has one local minimum at ω = 0 and two local maxima
at ω = ±(� + W ). On the other hand, for �1 �= �2 and

W = √
�1�2 (≡W ∗), two local maxima approach ω = 0,

forming a local maxima at ω = 0 with a sharp dip satisfying
T (0) = 0. We discuss the Fano factor on the basis of these
properties of the transmission probability.

The dependence of the Fano factor on the bias voltage
is shown in figure 8. The properties of the Fano factor are
qualitatively the same as those of the case of the T-shaped DQD
(figure 5). The only difference is that for the case �1 = �2

(�=0), the Fano factor is 1 for any value of W at small bias
voltage (figure 8(b)). In addition, only one local minimum
occurs in the Fano factor. These are caused by the fact that
T (0) = 0 for any value of W . Two local maxima occur in
T (ω), and there is one solution for F(V ∗) = (1 − T (eV ∗)) in
the range V ∗ > 0. This results in only one local minimum in
the Fano factor.

The dependence of the Fano factor on the interdot
coupling is shown in figure 9. Comparing this with the results
of the T-shaped DQD (figure 6), it is found that for the case
�1 = �2 (�=0), the Fano factor is 1 for any value of W at
small voltage (figure 9(b)). For other values of�1,2, there is no
qualitative difference between the T-shaped DQD and a parallel
DQD.

For the asymmetric coupling case, the behavior of
the Fano factor is similar to that of the T-shaped DQD.
The dependence of the Fano factor on the bias voltage is
nonmonotonic, as shown in figure 10. The limiting values of
the Fano factor are F(0) = 1 and F(∞) = 2α2 − 2α + 1.
Thus, for the asymmetric coupling case, there is no qualitative
difference between the T-shaped DQD and the type (i) parallel
DQD.

Second, we consider the type (ii), i.e., α1 = 1 − α2 =
α. The transmission probability obtained by the perturbation
expansion is

T (ω) = (F2
a1,+ − F2

a1,−)D
2

[D2 + F2
a2 − Fa1,+ Fa1,−]2 + D2(Fa1,+ + Fa1,−)2

,

(3.14)
where

Fa1,± = ( 1
2 ±√

α(1 − α))ω(2ω2 −�2
1 −�2

2 − 2W 2

± 2W (�1 +�2)),

Fa2 = (α − 1
2 )(�1 −�2)(ω

2 +�1�2 − W 2).

(3.15)

For α = 0.5, equation (3.14) agrees with equation (3.10).
The dependence of the current and the Fano factor on the bias
voltage is shown in figure 11. As α decreases, the current
decreases (resulting in a negative differential conductance),
and one local minimum occurs. For sufficiently small α, the
current becomes negative, and the Fano factor diverges. This is
due to the breakdown of the perturbation expansion. In the
limit α → 0, the type (ii) parallel DQD is equivalent to a
serial DQD with symmetric coupling. Thus, the perturbation
expansion has limitations in cases of the parallel DQD with
α1 = 1 − α2 and the serial DQD. The breakdown of the
perturbation expansion originates from the derivation of the
transmission probability. The numerator of equation (3.14)
is the difference of two terms; it becomes a negative value
in some bias voltage ranges when α is small. Thus,
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eV

eVeV

Figure 8. Dependence of Fano factor in type (i) parallel DQD on bias voltage for different energy levels of dots and interdot coupling.
α = 0.5. (a)�1 = �2 = 0. Curves denoted by •, ∗, ��, and ◦ correspond to cases W = 0.0, 0.04, 0.2, and 1.5, respectively.
(b)�1 = �2 = 1.0. Curves denoted by •, ∗, ��, and ◦ correspond to cases W = 0.0, 0.8, 2.0, and 4.0, respectively. (c)�1 = 1.0, and
�2 = 2.0. Curves denoted by •, ∗, ��, and ◦ correspond to cases W = 0.0, 1.1,

√
2.0, and 1.5, respectively.

the second order perturbation expansion cannot be used to
determine the correct behavior of a type (ii) parallel DQD when
α is small.

Here, we present a short summary of the behavior of the
Fano factor in T-shaped and type (i) parallel DQDs. There
are two noteworthy features. The first feature is that the shot
noise is sub-Poissonian, and F(0) for α = 0.5 is either 0 or
1 depending on the parameters �1,2 and W . We have found
that F(0) = 1 for α �= 0.5. On the other hand, F(∞) is
independent of these parameters, F(∞) = 2α2 − 2α + 1.
This limiting value is same as that in the case of a SQD, so
that the behavior of the Fano factor at large bias voltage is
essentially same as that in a SQD. The second feature is that
the nonmonotonic behavior of the Fano factor results from
the interdot coupling; three local extrema can occur in the
Fano factor. The interdot coupling causes the mixing of bare
energy levels of dots to form effective energy levels of dots.
The transmission probability has a complex dependence on
�1,2 and W , and there can be three solutions for F(V ∗) =
(1 − T (eV ∗)) in the range V ∗ > 0. This leads to three local
extrema in the Fano factor. Thus, the behavior of the Fano
factor in an intermediate voltage range is different from that in
a SQD.

Let us discuss the influence of the Klein factor on our
results. In the bosonization and refermionization processes,
we neglected the Klein factor, so that the Fermi statistics of
electrons does not hold. By using the renormalization group
method, it was shown that the current does not flow when the
Klein factor is considered for an asymmetric (α �= 1/2) type
(i) parallel DQD with W = 0 [38]. On the other hand, for
the symmetric coupling case (α = 1/2), the model flows to
an intermediate fixed point γ 2

1,L = γ 2
2,L = γ 2

1,R = γ 2
2,R =

4π2(1 − 1/(2g)) (≡γ 2
c ). This suggests that current flows for

g > 1/2. In this study, we chose g = 1/2, for which γc = 0, so
that the current does not flow even if the coupling is symmetric.
Thus, with the Klein factor and g = 1/2, the current does
not flow for both symmetric and asymmetric type (i) parallel
DQDs. The results of this study are valid if the Fermi statistics
of electrons can be neglected.

4. Conclusions

We studied the transmission probability and the Fano factor
for T-shaped and parallel DQDs connected with two infinite
LL electrodes. The original Hamiltonian was mapped to the
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Figure 9. Dependence of Fano factor in type (i) parallel DQD on interdot coupling for different energy levels of dots. α = 0.5.
(a)�1 = �2 = 0, (b)�1 = �2 = 1.0, and (c) �1 = 1.0, and �2 = 2.0. Curves denoted by •, ∗, and �� correspond to cases
ln(eV/�) = −4.0, 0.0, and 4.0, respectively.

eV eV

Figure 10. Dependence of Fano factor in type (i) parallel DQD on bias voltage for different energy levels of dots, interdot coupling, and
asymmetry parameter. (a) α = 0.1 and (b) α = 0.3. Curves denoted by •, ∗, and �� correspond to cases (�1,�2,W ) = (0, 0, 0), (2, 0, 1),
and (2, 1,

√
2), respectively.

Kondo-type Hamiltonian at the Toulouse point; however, the
Klein factor was neglected in the derivation. Consequently,
the results of this study are valid if the Fermi statistics of
electrons can be neglected. Applying the S-matrix expansion,
we derived the current and the shot noise up to the second order

of γ±1,2. In order to numerically calculate them, we derived
the complete set of Green’s functions by the perturbation
expansion. We first verified the validity of the perturbation
method for a SQD. The Fano factor in a SQD at large bias
voltage does not depend on the energy level, but on the
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eV eV

Figure 11. Dependence of (a) current and (b) Fano factor in type (ii) parallel DQD on bias voltage for different asymmetry parameter.
�1 = 2, �2 = −1, and W = 1. Curves denoted by •, ∗, and �� correspond to cases α = 0.5, 0.1, and 0.01, respectively.

asymmetry parameter. Similarly, the Fano factor in a DQD at
large bias voltage is same as that in a SQD. On the other hand,
the structure of the transmission probability for a DQD has a
complex dependence with energy levels and interdot coupling.
When the relation F(V ∗) = (1−T (eV ∗)) (V ∗ > 0) is satisfied
self-consistently, a local extremum occurs in the Fano factor.
The number of solutions corresponds to the number of local
extrema in the Fano factor. Thus, the Fano factor in a DQD
behaves nonmonotonically, and local minima and maxima can
occur in an intermediate voltage range.

The nonmonotonic behavior of the Fano factor in
a DQD connected with Fermi liquid leads under strong
on-site Coulomb interactions has been studied [30–32].
In such systems, the Kondo effects, Fano interference,
antiferromagnetic exchange interaction between dots, and
Coulomb blockade cause the nonmonotonic behavior of the
Fano factor. In contrast, although the intradot and interdot
Coulomb interactions are not considered in our model, the
Fano factor shows a nonmonotonic behavior when the relation
F(V ∗) = (1 − T (eV ∗)) is satisfied self-consistently.

The limitations of the second order perturbation calcula-
tion for the Fano factor occur in two different stages. The first
limitation occurs at a low bias voltage for a SQD and a DQD
when α is small and�1,2 is large. The second limitation occurs
in an intermediate bias voltage for a type (ii) parallel DQD and
a serial DQD.
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